- Title
- A family of higher-rank graphs arising from subshifts
- Creator
- Weaver, Natasha
- Relation
- University of Newcastle Research Higher Degree Thesis
- Resource Type
- thesis
- Date
- 2009
- Description
- Research Doctorate - Doctor of Philosophy (PhD)
- Description
- There is a strong connection between directed graphs and the shifts of finite type which are an important family of dynamical systems. Higher-rank graphs (or k-graphs) and their C*-algebras were introduced by Kumjian and Pask to generalise directed graphs and their C*-algebras. Kumjian and Pask showed how higher-dimensional shifts of finite type can be associated to k-graphs, but did not discuss how one might associate k-graphs to k-dimensional shifts of finite type. In this thesis we construct a family of 2-graphs A arising from a certain type of algebraic two-dimensional shift of finite type studied by Schmidt, and analyse the structure of their C*-algebras. Graph algebras and k-graph algebras provide a rich source of examples for the classication of simple, purely infinite, nuclear C*-algebras. We give criteria which ensure that the C*-algebra C*(A) is simple, purely infinite, nuclear, and satisfies the hypotheses of the Kirchberg-Phillips Classification Theorem. We perform K-theory calculations for a wide range of our 2-graphs A using the Magma computational algebra system. The results of our calculations lead us to conjecture that the K-groups of C*(A) are finite cyclic groups of the same order. We are able to prove under mild hypotheses that the K-groups have the same order, but we have only numerical evidence to suggest that they are cyclic. In particular, we find several examples for which K1(C*(A)) is nonzero and has torsion, hence these are examples of 2-graph C*-algebras which do not arise as the C*-algebras of directed graphs. Finally, we consider a subfamily of 2-graphs with interesting combinatorial connections. We identify the nonsimple C*-algebras of these 2-graphs and calculate their K-theory.
- Subject
- operator algebras; graph algebras; higher-rank graph
- Identifier
- http://hdl.handle.net/1959.13/38511
- Identifier
- uon:4312
- Rights
- Copyright 2009 Natasha Weaver
- Language
- eng
- Full Text
- Hits: 1290
- Visitors: 1500
- Downloads: 291
Thumbnail | File | Description | Size | Format | |||
---|---|---|---|---|---|---|---|
View Details Download | ATTACHMENT01 | Abstract | 109 KB | Adobe Acrobat PDF | View Details Download | ||
View Details Download | ATTACHMENT02 | Thesis | 694 KB | Adobe Acrobat PDF | View Details Download |